HITECH ENERGY

Recent Li-Ion Battery Development for LEV Applications

Mo-Hua Yang August, 2014

- LEV Market
- > LEV System
- Batteries for LEV
- Factors Affecting LEV Market

LEV Developments

- · Market
- · Design
- Technology

- 0.3 million USA,
- 1.5 million in Europe,
- 1.5 million in India, Japan and Taiwan,
- 32 million in China

LEV-Design

LEV-Technology

System Integration

Efficiency in transport operations is as important as battery and motor choice

- More energy consumption cost your money
- High efficiency system is route to profit

Design Consideration for Battery System

Discharge Ability

- How much energy is available in the storage ?
- With what power can LEV draw this energy from the storage ?
- May LEV still perform a certain (critical) function relying on the storage ?
- How long can LEV still continue drawing a certain power ?

Recharge Ability

- How much energy can I still store into the storage (
- How fast (with what power or current) can I store energy into the storage ?
- What will be my energy losses under different charging conditions ?

operation conditions influent to battery performance

Battery Requirements from LEV

Capacity: 10Ah-30Ah

Discharge rate capability: 2C-5C starting, acceleration, climbing

Battery Location

From Material to LEV HITECH ENERGY Syste control Tech. rech. LEV лe **Battery T** Cell **Materials**

Cathode Material

	Li diffusion	Material system	Capacity (mAh/g)	Nominal V. (V)	Safety	Cost
Olivine structure	1D	LiFePO4	160	3.4	excellent	low
Layered structure	2D	LiCoO2 Li(Co-Ni)O2 Li(Ni-Mn)O2 LiCo1/3Ni1/3Mn1/ 3O2	160 180 160 190	3.6~3.7	accept	high
Spinel structure	3D	LiMn2O4	110	3.7	good	low

		LiCoO2	Li(NiCoMn)O2	LiMn2O4	LiFePO4
Nominal voltage		3.6V	3.7V	3.8V	3.2V
Specific energy (mat	terial)	145 (4.2V)	165 (4.2V)	110 (4.2V)	150 (3.6V)
mAh/g					
Specific energy (c	ell)	120-150 (4.2V)	130-160 (4.2V)	90-110 (4.2V)	90-120 (3.6V)
Wh/kg					
Material decomposition		>1000J/g	>1000J/g	>800J/g	N.A
(in presence of electrolyte)		at 220 ℃	at 300℃	at 280 ℃	
Over charging voltage		<5.5 V	<5.5 V	<12V	>18V
Cycle life		>500 at rt	>500 at rt	>500 at rt	>1000 at rt
(>80%)		>500 at ht	>500 at ht	<300 at ht	>1000 at ht
LiFePO4	LiFePO4←→Li + + e - + FePO4				
LiCoO2	LiCoO2←→0.5Li + + 0.5e - + Li0.5CoO2				
LiMn2O4	LiMn2O4←→x Li + + x e - + Li1-xMn2O4				
LiCo1/3Ni1/3Mn1/3O 2	^{3O} LiNi1/3Co1/3Mn1/3O2←→x Li + + x e - + Li1-x Ni1/3Co1/3Mn1/3O2				

Heat Generation of Different Cathode Materials

IJ

Li-ion Cell Design

Cylindrical type

Prismatic type

Laminated type

Small Cell vs. Large Cell

Large Format cell

Development considering HEV / PEV use

- · High pack reliability
- · Low cell quality (poor uniformity)
- High cell price (>800USD/kWh)

18650 type cell

Application of current technology

- High cell reliability
- Low cell price (<400USD/kWh)

For a 36V/10Ah battery pack

What We Learn from Small Li-ion Battery?

18650 Cell Developments

LIB Material Developments

9

18650 Cell Design

Gas Release Vent

20

Positive electrode

Design for safety

- · CID (Current interrupt device)
- · gas release vent
- shutdown separator
- separator coating
- center pin
- thermal stable active material
- stable electrolyte
- protection tape on weak point (Al and Ni tab)

Design for power performance

- NMC, NCA cathode material introduce
- PTC remove
- increase electrode tab number
- lower internal resistance (<30mΩ)

21

Cell

Module/Pack

Electronics

Battery management system : Cell monitoring (T, V, A) Module/pack protection

Battery Management System

Product Development in next 1-3 Years THITECH

24

18650 Cell for LEV Applications

Application for Li-ion Batteries

Opening New Markets

26

Trade-off relationship in various battery performances

Key Successes Factors For LEV Market

Interface standardization: Energy Bus

www.energybus.org

Universal charging interface IEC/ISO/TC69/JPT61851-3 Safety Standardization: BATSO

www.batso.org ISO 18243 & CLC/TC21X

Energy supply service system
 Battery exchange system (SWAP)
 Charging Station
 Public LEV Infrastructure Initiative:
 IEA HEV IA Task 23

HITECH ENERGY

謝謝 Thank you TD HiTech Energy Inc.

- 2F No. 181 Anmei Street Neihu District
- Taipei City 114 Taiwan R.O.C.
- Tel +886-2-796-5990
- Fax +886-2-2796-5970

High Capacity Cell Development

Characteristics of the Panasonic NNP technology:

- Good cycle life performance
- High energy density

The new Nickel positive electrode excels in durability in actual use and charge retention

Low self-discharge

DECIFICATIONS

Long storage reliability through reduced metal elution

NNP: Nickel Oxide Based New Platform

Panasonic

SPECIFICATIONS	
Model number	NCR-18650B
Nominal voltage (V)	3.6
Nominal capacity*1 - Minimum (mAh)	3,250
Nominal capacity*1 - Typical (mAh)	3,350
Dimensions - Diameter (mm)	18.5
Dimensions - Height (mm)	65.3
Approx. w^eight (g)	47.5

High Capacity Cell Development

Cathode Material Design: high-Ni NCA

0

		~~~	
ltem		Target	
		INR18650-34E	
Capacity (Typical, 0.2	3350mAh		
Capacity (Min, 0.2C d	3250mAh		
AC IR (1KHz)		< 35mΩ	
Nominal voltage (0.20	C discharge)	3.60V	
Charging voltage		4.2V	
Discharging end voltage		2.5V	
Charging current Standard		1650mA/ 0.5C	
Max. discharge curre	nt	10050mA/3C	
Cycle Life (0.5C ch./1C disch.)		80%@500cy	
Cycle Life (3C discha	N/A		
Weight (g)		TBD	

7.18.2

#### Anode Material Design: high energy density



#### Thick electrode technology



# Standard Charge/Discharge Profile

Capacity(mAh)

1200 1500 1800 2100 2400

2700 3000

3300

#### Can-height up: Capacity-up design



#### sources: Samsung SDI

# **Battery Safety !!!**



BATSÒ





















Safety issue can cause the damage or slow down ew application market

#### AVICENNE, The rechargeable battery market, 2006-2015, September 2007

# Safety Issue

- More & more incidents & accidents
- All the battery makers and the OEM are concerned
- Recall cost impact
  drastically the battery
  business and the profitability

Battery Makers	OEM	Battery recall	Date	Cost
Matsushita	Nokia	46 M cells	08/07	100-200 M\$
Sanyo	Mitsubishi	1.3 M cells	12/06	35 M \$
Sony	Dell, Apple, Toshiba, Lenovo,	10 M Packs 65 M cells	2006	430 M\$

#### RECALL SLASH BATTERY PROFIT







# Conclusions

•

٠



- A 1865 cell design with 2.9Ah capacity is appropriate for LEV/EV application by the following design characteristics:
  - cathode material- based on NCA to increase the capacity and discharge rate capability
  - thickness of separator- about 10~20µm
  - electrode design: long and thin electrode, nickel tape is located in the middle of cathode electrode to lower cell IR
  - cell design: no PTC but CID and center pin are remain for safety
  - Low internal resistance of cell and safety improvement are the key design factors for the LIB in EV application
  - Cell capacity could be increase to 3.2-3.6Ah by safety improvement in 2-3 years







#### **Development with HT Energy: turnkey Solutions**








HITECH

ENERGY

Chainless, foldable bike - 36V



mandofootloose

#### **Customized Solution – 44V**





reddot design award winner 2013







ENERG

**Customized Solution - 36V** 







#### **Customized Solution - 48V**





A4000I







#### Stromer-ST2









#### Stromer-ST2



More Design

More Power

More Range

**More Connectivity** 

#### Stromer-ST2

#### Motor:

-brushless, direct-current motor -located in the bike's rear hub -500W, 35Nm of torque





Stromer-ST2 Battery:

-Energy: 814Wh (150km) -Voltage: 48V -Weight: 5kg -EnergyBus connector





HITECH FNFRG

Stromer-ST2







Comfort



Sport model is available in a 20" and 17" frame

Comfort model is available in a 17" frame

Shimano 20-speed drivetrain

confidential & proprietary



#### Stromer-ST2



HITECH

ENERGY

### **E-Bike- Revolution Products**





http://www.stromerbike.com/en/int

### **Design-related Definitions-1**

### ≻ Anode ( 陽極 ):

The electrode at which an oxidation reaction occurs. Usually, a cell's anode is specified during discharging and hence the name anode is commonly used for the negative electrode.

### > Cathode ( 陰極 ):

The electrode at which a reduction reaction occurs. Usually, a cell's cathode is specified during discharging and hence the name and the componing used for the positive the desired of the positive the desired of the positive the desired of the de

John Frederic Daniell (1790-1845)



photo credit: Bioanalytical Systems, Inc.



### **Design-related Definitions-2** ENERGY

#### > Electrolyte:

The medium that provides the essential ionic conductivity between the positive and negative electrode of a cell.

#### Separator:

An ion-permeable, electronically non-conductive material or spacer that prevents short-circuiting of the positive and negative electrodes of a cell.

**Gaston Plante** (1834-1889)





### Application-related Definitions-

#### C-rate :

A charge or discharge current equal in Amperes to the rated capacity in Ah. Multiples large or smaller than the C-rate are used to express large or small currents.

#### Cycle Life:

The number of cycles that a cell or battery can be charged and discharged under specific conditions, before the available capacity in (Ah) fails to meet specific performance criteria. This will usually be 80% of the rated capacity.

### **Application-related Definitions-2^{IN}**

#### Cut-off voltage:

The cell or battery voltage at which the discharge is terminated. Also often referred to as End-of-Discharge voltage.

#### Self-Discharge:

Recoverable loss of capacity of a cell or battery. This is usually expressed in a percentage of the rated capacity lost per month at a certain temperature, because self-discharge rates of batteries are strongly temperature-dependent.

## Principal of Li-ion Battery

Anode: graphite (C)

Cathode: lithium cobalt (LiCoO2)

Electrolyte: non-aqueous organic solvent



**Cathode:** LiCoO2 → Li(1-x) CoO2+xLi++xe-

Anode: C6 +xLi ++xe-  $\longrightarrow$  Lix C6

TotalRxn.: LiCoO2+C6  $\stackrel{\text{Charge}}{\underset{\text{Discharge}}{\longleftarrow}}$  Li(1-x) CoO2+LixC6













> Thermal heat: LiNiCoMnO2 > LiMn2O4>> LiFePO4

The thermal heat of charged LiFePO4 electrode was mainly contribute from the pure electrolyte

### **Commercial 18650 cell for Evaluation**

Company	Capacity
Α	2.9Ah
B	2.9Ah
С	2.9Ah



# cell models received from Japan cell models received from Korea

59

### Structure of Top Cover (Caps)



### **Electrode Structure - Cathode**





### **Cathode Material Analysis**



#### A Company

#### **B** Company

#### **C** Company

Element	Line Type	Wt%	Wt% Sigma	Atomic %
0	K series	35.70	0.49	66.45
Al	K series	1.03	0.12	1.13
Р	K series	0.76	0.12	0.73
Со	K series	9.94	0.43	5.02
Ni	K series	52.58	0.58	<b>26.6</b> 7
Total:		100.00		100.00
Element	Line Type	Wt%	Wt% Sigma	Atomic %
0	K series	23.87	0.47	39.98
F	K series	25.17	0.63	35.50
Al	K series	1.28	0.14	1.27
Р	K series	1.42	0.15	1.23
Со	K series	<b>7.8</b> 7	0.46	3.58
Ni	K series	40.40	0.71	18.44
Total:		100.00		100.00
Element	Line Type	Wt%	Wt% Sigma	Atomic %
0	K series	23.87	0.47	39.98
F	K series	25.17	0.63	35.50
Al	K series	1.28	0.14	1.27
Р	K series	1.42	0.15	1.23
Со	K series	7 <b>.8</b> 7	0.46	3.58
Ni	K series	40.40	0.71	18.44
Total:		100.00		100.00

#### sisylanA 203 bna M32





63

### **Anode Material Analysis**



#### A Company

#### **B** Company

#### **C** Company

Element	Line Type	Wt%	Wt% Sigma	Atomic %
С	K series	83.61	0.41	87.76
0	K series	13.56	0.38	10.69
F	K series	1.99	0.17	1.32
Р	K series	0.33	0.04	0.14
Cu	L series	0.50	0.12	0.10
Total:		100.00		100.00

Element	Line Type	Wt%	Wt% Sigma	Atomic %
С	K series	86.26	0.39	90.00
0	K series	9.98	0.35	7.82
F	K series	2.90	0.18	1.91
Р	K series	0.46	0.04	0.19
Cu	L series	0.40	0.12	0.08
Total:		100.00		100.00
Element	Line Type	Wt%	Wt% Sigma	Atomic %
С	K series	81.04	0.39	85.80
0	K series	14.93	0.37	11.87
F	K series	2.42	0.17	1.62
Si	K series	1.28	0.05	0.58
Р	K series	0.33	0.04	0.13
Cu	L series	0.00	0.00	0.00
Total:		100.00		100.00

#### sisylsnA SD3 bns M32





64

### **Structure and Material Analysis**



	PTC/Ni Ring	Length of Electrode	Thickness of Electrode	Thickness of substrate	
Symbol		Cathode/Anode	Cathode/Anode Cathode/Anode		Sep.
		mm	μm	μm	μm
Α	Ni Tab	697/771	130/150	15/10	20
В	Ni Tab	670/745	130/150	15/10	10
С	Ni Tab	630/705	160/160	15/10	20

### **C-rate Test for the Cells**



CHG :0.5C to 4.2V,cut-off 0.05C DCHG:1C/2C/3C cut-off 2.75V

### **Cycle Life for the cells-1C**



TECH

ENERG

### **Cycle Life for the cells-3C**



HITECH ENERGY



### **Battery Module Technologies**







#### Grace One - 44V







- 技術 Technology 設計 Design
- - 市場 Marketing 合作 Collaboratio




















## How to Accelerate LEV Market









### **Driving Range & Convenience**



### **Urban Mobility**

Continental, 2010

## **Personal Motilities**









### **Personal mobility**



Э

÷.

o et ry





Power on demand

# **Rechargeable Battery**



	Pb-acid	Ni-Cd	Ni-MH	Li-ion
Commercialization	1890	1956	1990	1991
Working voltage	2.0V	1.2V	1.2V	3.6V
Energy density	100 Wh/l 30Wh/kg	150 Wh/l 50Wh/kg	250 Wh/l 80Wh/kg	350-400 Wh/l 150Wh/kg
Cycle life	300	1000	500	500
Self-discharge	20%/month	20%/month	20%/month	5%/month
Memory effect	no	yes	partially	no
Price	<0.2 \$/Wh	0.5 \$/Wh	0.5-1 \$/Wh	0.5-1 \$/Wh
Green product	no	no	yes	yes



#### To get 3.6 v, we need , in one pack :

2 Pb-acid cell



Pb-acid 4.0 volts

- 3 NiCd cells or
- 3 NiMH cells



NiCd or NiMH 3.6 volts

1 Li-ion cell



Li-ion 3.6 volts